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An experiment on free thermal convection of water 
in saturated permeable material 

By R. A. WOODING 
Applied Muthematirs Lnhorntory, Department of Scientific and Indirstrinl Research, 

Wellington, New Zealand" 

(Rerpived 3 September 1957) 

SUMMARY 
A small-scale experimental model has been constructed for the 

study of steady-state slow free convection of water in saturated 
sand. The  convection field is confined between coaxial cylinders 
maintained at constant temperature difference, and the upper 
and lower boundaries consist of planes with thermal and fluid 
insulation. Measurements of the temperature distribution 
within the convection space have been obtained for average 
boundary temperature differences ( T I  - To) of (I) 18-40" A, 
(11) 32.70" A, and (111) 46.68" A. Theoretical temperature 
values predicted from perturbation theory have been fitted by 
least squares. The  first-order estimates of ?/(TI-- To), where 17 
is the convection parameter or modified Rayleigh number, do not 
differ significantly from a constant value ( + 3 %  S.D.) for the 
three given values of T,  - To, indicating good agreement between 
theoretical and experimental results. First-order estimates are 
made also of the temperature coefficient of thermal conductivity b 
of the sand-water mixture, and of the coefficient of radiation loss c 
at the upper insulated boundary, but these estimates are less 
reliable. Separate determinations of q/(Tl- To), b, c by direct 
physical measurement are in good agreement with the least-squares 
estimates. 

1. INTRODUCTION 
I n  a recent paper (Wooding 1957), the equations governing slow free 

convection of liquid in saturated homogeneous permeable material have 
been solved approximately, using perturbation expansions of the dependent 
variables (temperature and stream function) in powers of a convection 
parameter r). The  method is very closely related to the technique of 
expansion in powers of the Rayleigh number 

C1 - TOW3 R =  9 

KO vo 
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which has been applied to problems of free convection in fluids (Batchelor 
1954), and in fact 

Under non-isothermal conditions each of these parameters arises naturally 
when the corresponding equation of motion is reduced to dimensionless 
form-the Navier-Stokes equation in the case of R and the Darcy equation 
in the case of 7. Hence 7 may be termed a modified Rayleigh 
number. 

In equation (I), u is the linear coefficient of thermal volume expansion 
of the liquid, To and TI  are two reference temperatures on the absolute 
scale, g is the acceleration due to gravity, d is a representative linear 
dimension of the convection field, K~ is the thermal diffusivity of the liquid 
at temperature To, and uo is the kinematic viscosity at temperature To. 
In equation (2), (K,n/K9L,)o is the value at To of the ratio of the thermal 
conductivity of the permeable solid-liquid mixture to the thermal con- 
ductivity of the liquid ; A is a linear dimension proportional to the particle 
or pore size of the solid, and N is a dimensionless constant dependent upon 
the geometrical shape of the particles. The  permeability k (= NA2) is 
assumed to be constant. 

Under given boundary conditions, the value of the convection parameter 7 
may be estimated in several ways. For instance : (a) by physical measure- 
ment of the quantities involved in the definition of 71 (equations (1) and (2)), 
( b )  by measurement of the distortion of the temperature field caused by 
convective flow of liquid, the observations being compared with a 
perturbation model of the form 

where 6' is a temperature parameter and do, el, d2 ,  ... are coefficients calculated 
from perturbation theory, (c)  by measurement of the liquid flow rates at 
selected points of the convection field, the observations being compared 
with a corresponding perturbation model involving the stream function 6. 
lL'Iethods ( 6 )  and ( c )  are applicable only over the range of small 7 for which 
perturbation theory is valid. 

'This paper describes the measurement of 7 by methods ( b )  and (u) 
respectively, the former method using an  experimental model with water- 
saturated sand as the convection medium, while for the latter method, 
separate measurements of the fluid permeability and thermal conductivity 
of the saturated sand are obtained. 

A particularly simple arrangement with cylindrical symmetry is chosen 
for the boundary conditions of the model. No attempt is made to use 
boundary conditions resembling those of a geothermal area, and, in fact, 
the latter task has been carried out recently by Mr  John Elder in the 
Cavendish Laboratory, Cambridge. The  present model, in addition to 
providing a preliminary check of the perturbation theory, serves to indicate 
a practical method of measuring directly the ratio ( K m / K w ) o ~ o  uo/k (see 

e = eo+7e,+r12e2+..., (3)  
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equation (2)) for samples of material obtained in geothermal areas, although 
the effect of large-scale fissuring, which is normally present in active parts 
of such areas, would be neglected by the method. 

T o  facilitate an accurate fit of the perturbation convection model to the 
experimental data, a refinement to  the equation of energy transport, 
involving modification of the coefficient of thermal conductivity of the 
mixture, will be considered. This is the variation with temperature of the 
thermal conductivity of the solid-liquid mixture. The  law of temperature 
dependence can be taken to be 

where Km, (KnJ0 are the values of the thermal conductiviti of the saturated 
permeable material at the temperatures T and To respectively, and the 
constant b is the linear coefficient of thermal conductivity. As b can be 
assumed to be small, its effect for small temperature differences can be 
treated by first-order perturbation theory. 

The  diffusion or dispersion of heat due to percolation of the liquid about 
the sand grains can be expected to be a small effect, although it could become 
significant in cases of appreciably high fluid flow speeds about coarse solid 
particles. The  phenomenon closely resembles Brownian motion in that 
a given fluid particle performs small random motions which are superimposed 
upon the main fluid motion q. From the analogy with the classical theory 
of random flights (Rayleigh 1899, Chandrasekhar 1943), it is a simple matter 
to show that the magnitude D of the ' thermal dispersion coefficient ' will 
obey the relation 

where A is a typical dimension of the solid particles or of the pores, pc is 
the heat capacity of the fluid, and 141 is the main flow speed. Then the 
apparent thermal conductivity of the saturated permeable material, for 
isotropic thermal dispersion, becomes K,, + D. If the dispersion effect 
is non-isotropic, its coefficient assumes a complicated tensor form 
(Chandrasekhar 1943). However, for very small A in comparison with 
the boundary dimensions, and with very slow fluid flow, as in the present 
experiment, it can be shown from ( 5 )  that D is negligible in comparison 
with Kr, and the effect of dispersion can therefore be neglected. 

For purposes of the experiment, it is necessary to consider briefly the 
influence of the dynamic boundary layer associated with each rigid boundary 
which is immersed in permeable solid material. Darcy-type flow solutions 
cannot satisfy the ' non-slip ' condition at a rigid boundary, whence it becomes 
necessary to neglect the region of boundary layer flow. This approximation 
is justified when the Reynolds number of the flow is very small. Then 
all fluid velocities in the pore spaces are of laminar (Poiseuille) type, and 
the shape of each velocity profile across a pore space, or normal to a rigid 
boundary, is independent of the kinematic viscosity v and of the main fluid 
flow rate /qj. It follows that the typical thickness 6 of the boundary layer 
depends on only the typical solid particle (or pore) size A, and that the ratio 

K m  = ( K m ) 0 { 1 +  b (T-  To)}, (4) 

D = o(PcA/ql), (5) 
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$/A is of order unity. This follows from the particular form of the 
Navier-Stokes equations for which the inertia terms are negligible, gradients 
perpendicular to the boundary .are large compared with those parallel, and 
the pressure gradient is given by Darcy’s law. If X’ is a coordinate measured 
along an impermeable rigid boundary immersed in saturated permeable 
material and I’ is measured along the normal, one has 

(pressure gradient)/p = - !! )q/ = wZrII, 

where u is the X-component of the flow, and jql is the speed of the main 
stream outside the boundary layer. 

k 

Since u y y =  O(lq//S2), this gives 

6 = O(W) = O(A), ( 6 )  
from the relation k = NA2 (Slichter 1899). 

2. APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS 

As in a previous paper (Wooding 1957), the differential equations of 
slow steady flow may be expressed in dimensionless units. The temperature 
parameter 0 is defined by 

where To, Tl are two typical boundary temperatures. 
flow’ vector go is defined from the continuity relation 

8 = ( T -  To)/(T1- To), (7) 
The ‘equivalent 

P q  = Pogo9 (8) 
in which it will be assumed that the density p of the liquid is related to the 
temperature by the approximate expression 

P = PoU-  a(T, - To)O - P(T1- To)202}, (9) 
po being the density at temperature To, and tc, /3 being constants. 
modified PCclet number < is given by 

The 

( G / 4 u ) o  c = qo  +o, (10) 
where K~ is the thermal diffusivity of the liquid at temperature To, d is a 
typical length derived from the boundary dimensions, and (Km/KJ0 is, 
as before, the ratio at To of the thermal conductivity of the mixture to the 
thermal conductivity of the liquid. 

Since the boundary conditions of the experiment have cylindrical 
symmetry, it is convenient to take axes in dimensionless units Y, x,  with 
Or horizontal and Ox directed vertically upwards, and to define Stokes’ 
stream function by 

i, k being vectors in the directions Or, Oz respectively. The suffices in r, z 
signify partial differentiation. 

Then, for slow steady motion of water in a saturated homogeneous 
permeable solid, the equations of energy and motion give in cylindrical 

c = i*Jr - k * h ,  (11) 

P.M. 2P 
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coordinates a pair of simultaneous partial differential equations for e(r, z), 
and +@, 4, 

1 1 1 
OT, + ; 6 ,  + 4 2  + WT1- To) {(Yee,), + (%),I = ; (+, 8,  - A  4) 

where 
a = (To - 260)-l (O A)-’ 

is a temperature coefficient for viscosity. 
For the approximate solution of equations (12) and (13) it will be assumed 

that T ,  b are small, and that 0 and + may be expanded in power series 
involving these quantities. (Also, for convenience in later analysis, we 
introduce the notation m = q/( Tl - To), the parameter m being independent 
of Tl- To.) Then the perturbation models will be written as 

e = eO+m(Tl- To)el+b(Tl- To)e(l)+m2(Tl- T o p 2 +  ..., 
+ = m( TI - To)$1+ mZ( TI - 

(15). 

(16) + ... . 
Here, the second-order term (in m2) will be calculated in order to estimate 
-the magnitude of the second-order correction. The second-order terms 
in mb, b2 will be ignored, on the assumption that only the linear term in b 
has significance. The series solution (15) and (16) of the equations (12) and 
(13) may be fitted to suitable experimental data to obtain estimates of the 
parameters m and b. 

Substitution of equations (15) and (16) into (12) and (13) gives a series of 
partial differential equations for the perturbation coefficients 8,, O,, 
t,b2, O2 and 00, 

(17) 
1 

(eo)rr + ; P o ) ,  + ( ~ 0 ) z z  = 0, 

(4l)rr - ; (h) ,  + (h)ZZ - Y{PO)r(+l)r + (~O)Z(+l)Z~ + 
1 

+Y{l+4Tl - To)eoH1+ (2a/.><Tl- To)eO)Po), = 0, (18) 
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where y = a( Tl - To){ 1 + a( Tl - To)Oo}-l, 

‘These are readily transformed into finite-difference equations by the usual 
procedures, taking a square mesh of element dimension h, and relaxation 
techniques may be applied in order to obtain approximate numerical 
solutions for the coefficients. 

3. DESCRIPTION OF APPARATUS AND EXPERIMENTAL PROCEDURE 

Figure 1 illustrates in diagrammatic form the arrangement of temperature 
Ox is the axis of 

In 
and flow boundaries chosen for the experimental work. 
two concentric cylinders AD, BC which have radii in the ratio 2: 7. 

Figure 1 .  Boundary configuration of the cylindrical model, showing mesh points of 
the relaxation net. 

the dimensionless system the length unit is taken as d = AB, giving the 
dimensionless r, x values shown for the various boundaries. The 30 points 
arranged in a square mesh represent points of the relaxation net, from which 
it will be seen that h = t in dimensionless units. These points correspond 
to thermocouple positions in the experimental arrangement. 

2P2 
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The cylinders AD and BC are held at constant temperatures TI and To 
respectively (TI  > To), while the boundaries AB, CD satisfy conditions 
of nearly complete thermal insulation. All four boundaries are impermeable 
t o  liquid. Consequently, the boundary conditions for the numerical 
calculations may be described ideally as follows : 

on BC, e = o ;  
on DA, e =  1 ;  

on AB, CD, s, = 0; (23) 
on AB, BC, CD, DA, z,b = 0. (24) 

A feature of these boundary conditions is that (O& vanishes throughout 
equations (17) to (23). 

I 

I 
I I 

I 
I 
I 
I 
1 
I *  
I *  

0 0. I 
LENGTH (cm.) 

0 *2  

Figure 2. Length-breadth distribution of 100 grains of quartz sand. The regression 
lines and standard deviation have been calculated from a total sample of 233 
grains. 

In  the experimental arrangement, two copper cylinders of radii 3.8 cm 
,and 13.3 cm are arranged coaxially to represent boundaries DA and BC 
respectively. The outer cylinder is surrounded by a water jacket, while 
the inner cylinder forms the sides of a water-tight container. Constant, 
practically uniform, temperatures are maintained on the boundary cylinders 
by means of circulating water with thermostatic control. 

The space between the temperature-controlled copper cylinders, of 
width d = 9.5 cm, is filled with standard graded quartz sand (porosity 0.4 
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approximately) to a depth of 0.8d. Figure 2 is a scatter diagram showing 
the length-breadth relation for a sample of 100 sand grains, based on the 
assumption that each grain is approximately ellipsoidal. (Since these results 
have been obtained from a single photomicrograph, measurements are not 
available for the depth of each grain.) The sample is seen to be satisfactorily 
homogeneous, and if A is a typical dimension for grain size it follows that 
A/d = O(10-2). 

A thin sheet of bakelite mounted vertically and radially supports 
copper-constantan thermocouples in the 30 positions shown in figure 1 ,  
the thermocouple leads being carried circumferentially for several centimetres 
from the junctions to reduce conduction errors. Each thermocouple 
junction is arranged to project about 0.4cm beyond the bakelite sheet, 
and is supported by gluing the copper and constantan wires to the sheet 
For the thermocouples adjacent to the boundaries corresponding to BC 
and DA, extra support can be afforded by the cylinder walls, as these are 
in effective thermal contact with the thermocouples. 

Although a boundary layer exists close to  the vertical bakelite sheet, 
its effect upon the thermocouple readings can be considered negligible 
provided that 6 =i. A < 0*4cm, where 6 is the thickness of the layer ($1). 
From figure 2 it appears that this condition is practically satisfied. 

Thin sheets of bakelite sealed with a rubber-based glue render the upper 
and lower boundaries impermeable to  moisture, and are backed by layers 
3 cm thick of Perspex ' honeycomb ' to provide thermal insulation. 
Compression applied to the top of the upper layer of insulating material 
is transmitted throughout the assembly, and ensures that (except for possible 
packing irregularities) the sand should have an approximately constant 
fluid permeability and thermal conductivity within the convection space. 

After the convection space has been filled with boiled water, care being 
taken to exclude all air bubbles, the inner and outer boundaries are adjusted 
to have a suitable temperature difference which is maintained as nearly 
constant as possible. A period of up to four hours elapses before steady-state 
conditions are approached. 

Three different values of the boundary temperature difference have been 
employed, the experimental average values of Tl- To being (I) 18.40" A, 
(11) 32.70" A, (111) 46.68' A. In  each case, To is held close t o  (273 + 20)" A, 
for which u = 2.25 x (" A)-2 in equation (9), 
and a = 1/33 (" A)-l in equation (14). 

Experimental values 0, of the convection temperature parameter are 
computed from the measured temperatures T ("A) using the formula (7). 
The results for the three experiments are given in table 1. 

Steady-state conditions are found to be attainable on each cylindrical 
boundary to within k0.05"A for experiments I and 11, and to within 
- + 0.20" A for experiment 111. These results are obtained by observation 
of several boundary thermocouple outputs whilst the thermostats controlling 
the boundary temperatures pass through several 'on-off' cycles. It is 
easily shown from formula (7) that resultant variations in time of the 

(" A)-l, /3 = 3.75 x 
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parameter 0, are less than f 0.005 for experiments I and 11, and less than 
- + 0.010 for experiment 111. Corresponding time variations in the interior 
thermocouples are much reduced, owing to the short period (five to eight 
minutes) of the boundary variations, which are lagged by the saturated sand. 

275 (2) 
279 (1) 
263 (0) 
243 (0) 
241 (0) 

Expt. 
I 

119 (3) 
119 (1) 
112 (0) 
100 (-1) 
103 (-2) 

Expt. 
I1 

Expt. 
I11 

- 

686 (3) 
681 (4) 
673 (-1) 
655 (-1) 
645 (0) 

735 (0) 
710 (0) 

613 (0) 
680 (- 2) 

587 (2) 

791 (-8) 
742 (-5) 
660 (-3) 
559 (4) 
509 (10) 

D 999 (1) 
986 (14) 

E 1010 (-10) 
1004 (-4) 

A 998 (2) 

472 (2) 
459 (2) 
445 (0) 
416 (0) 
399 (0) 

514 (0) 
486 (0) 

387 (0) 
440 (- 1) 

~3.53 (0) 

593 (-4) 
533 (-3) 
437 (-1) 
347 (2) 
295 (4) 

D1003 (-3) 

E 1009 (-9) 
997 (3) 

999 (1) 
A 993 (7) 

D 1020 (- 20) 
1008 (-8) 

E l 0 0 9  (-9) 
991 (9) 

A 973 (27) 

313 (1) 
305 (0) 
263 (- 1) 
224 (-1) 
210 (-1) 

368 (-3) 
293 (-3) 
262 (-1) 
197 (2) 
172 (3) 

148 (2) 
141 (1) 
124 (-2) 

98 (-1) 
101 (-1) 

189 (-3) 
166 (-3) 
123 (-2) 
86 (3) 
76 (5) 

c -7 (7) 
0 (0) 

1(--I) 
F 1(-1) 

B 6(-6) 

C -6 (6) 
-2 (2) 

F 7(-7) 
-1 (1) 

B 2(-2) 

c 3(-3) 
5 ( - 5 )  

-7 (7) 

-~ 

F 8 (-8) 

B -10 (10) 

Table 1. Experimental values of the temperature parameter 1038,. Corresponding 
values of the boundary correction term 1038(0) are shown in parentheses. 

However, in the steady state, small spatial temperature variations occur 
in the 02-direction along the boundaries DA and BC (table 1). These 
appear to be due to the finite effective conductivity of each cylindrical 
boundary system, emphasized perhaps by the presence of a steady flow 
pattern within the circulating water. 

4. ANALYSIS OF RESULTS 

As noted at the end of $ 3 ,  the steady-state values of 0, obtaining on 
boundaries BC and DA vary by small amounts from the theoretical values 
of 0 given by (23). The theoretical boundary conditions will now be fitted 
t o  the experimental values by applying a perturbation 0to) to 8, such that 

on BC, DA, 1 - 8(O) = 0, ; 

on AB, CD, eLo) = 0. (25) 

(26) 

Also, let the definition of O(O) be such that 

e - w) = e, 
within the convection space. Here, 8 can be assumed to be represented by 
the perturbation series (15). As O ( O )  is very small, cross-product terms 
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involving m( Tl - To)Bl Oco), etc., will be neglected, whence it is readily shown 
that is harmonic to first order in the convection space. Values of go) 
calculated by relaxation methods are given in parentheses in table 1. 

A further correction to the boundary conditions arises from the possibility 
of thermal radiation through the insulation at the boundaries AB, CD. 
Since the external ambient temperature is normally close to To, it is possible 
to assume that the radiation boundary conditions take the form 

on CD, 0, = c0; 

With the assumption that the radiation constants c,  c’ are very small, it is 
possible to take first-order perturbations in 0 of form 

this expression being combined with (15). 

on AB, 0, = do. (27) 

ce(2) + c’e(3), (28) 

Table 2. Numerical values of the perturbation coefficients calcuiated by relaxation 
The given values of Bo, W and @z) apply for 

Tables 2, 3 and 4 give numerical values of the coefficients do, $1, el, t / ~ ~ ,  O2 
and #(l), calculated by relaxation methods from equations (17) to (22) 
respectively, and using the boundary conditions derived by substitution 
of (15) into (23) and (16) into (24). Also tabulated are values of 6K2), which 
are calculated from Laplace’s equation with boundary conditions derived 

methods for experiment I. 
experiments I, I1 and 111. 



103+, D 0 0 0 0 o c  
0 -59 - 70 - 60 - 38 

E 0 -74 - 91 - 79 -50 

1044 D 0 184 184 127 61 
0 126 127 88 43 

E 0 0 0 0 O F  

D 0 0 0 0 o c  
0 0 - 77 - 93 - 65 

E 0 0 0 0 O F  

- 

-- 
1050, D 0 -44 9 33 24 

0 -49 -4 22 19 
E 0 -53 -16 12 14 

1 0 4 4  

8 
0 

F 0 

C 0 
0 
0 

0 
0 
0 

C 0 
0 

F 0 

- 

0 0 
0 

E 0 

0 0 
- 90 - 74 

-117 - 97 

238 160 
164 111 

0 0 

0 0 

____- 

~ _ _ _ _ _ _ _  

L> 0 
0 

E 0 

0 
- 44 
- 58 

75 
52 
0 

0 
- 

0 
- 80 
- 100 

1059, 

-___ 
1058, 

245 
167 

0 

D 0 
0 

E 0 

D 0 
0 

E 0 

-165 
0 

58 
40 
23 

0 
- 22 

0 
- 101 

0 

39 
31 
23 

- 
- 70 

80 
- 90 

-158 
0 

23 
0 

- 22 

C 0 
0 

F 0 

C 0 
0 

F 0 

C 0 
0 

F 0 

C 0 
0 

F 0 

--___ 

Table 4. Numerical values of the perturbation coefficients calculated by relaxation 
methods for experiment 111. 

are antisymmetrical about EF. O@) does not possess symmetry of this type, 
but 0(3) and 8c2) are related antisymmetrically about EF. Finally, the 
functions B,, 8(l) and 0@) have the same values for experiments I, I1 and 111. 

Because of the small scale of the apparatus used, the sand grains are of 
appreciable size ( A / d  = 0(10-2)) and the spatial temperature gradient is. 
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high, with resultant scatter in the experimental temperature readings. It is 
preferable, therefore, to use statistical methods (least squares) in fitting the 
theoretical model to the data of table 1 for the three values of the boundary 
temperature difference which are employed, and to use significance tests 
in evaluating the adequacy of the model. 

Combination of equations (15) and (28) shows that the statistical 
temperature model will be of the form 

8 - 8, = m( T, - To)8, + b( TI - T0)W + c O ( ~ )  + c ' d o  + m2( TI - T o p 2  + E ,  (29) 

to the order of accuracy considered, where all of the parameters m, b, c 
and c' should be constant for varying values of TI- To. Point values of 
the residual error variable E will be assumed to be distributed approximately 
normally and independently of each other with zero mean. Since not all 
terms in the analysis are necessarily significant, and since the complete 
model would prove unwieldy when obtaining a least-squares fit, a series 
of partial models will be used, each model involving not more than three 
of the parameters on the right-hand side of (29). For future reference, 
each partial model will be labelled Hi, with residual variable ei and a 
corresponding suffix will be used to identify the parameters retained. 

Table 5 gives the numerical results obtained with a number of partial 
models for the three cases I, I1 and I11 by the usual least-squares methods. 
In table 5, entries from the left are in terms of model number i, parameters 
retained in model i, degrees of freedom vi, experiment number (I, I1 or 111), 
optimal parametric estimates, and standard error of estimates. The 
significance of each added parameter is estimated by means of the variance 
ratio Ffi, computed from the residual sums of squares Z(E:) ,  Z (E~")  for the ith 
andjth models respectively (i > j ) ,  from the formula 

(Pearson & Hartley 1954). Each tabulated value of Qp gives the probability 
of exceeding the observed F-ratio by chance. Thus, a very small value 
of QF implies that the added parameter is significant. 

The models H,, H2 and H3, (i = 1, 2, 3 in table 5), are intended to test the 
significance of the convection effect to first and second orders respectively. 
However, H3 cannot be tested against H2 by the usual significance tests, 
since m, m2 are not independent parameters. A conservative test for 
non-significance of m2 may be obtained by replacing m2 with an independent 
parameter 1 (El4), and testing H4 against H2. Thus, if this test shows that 
the effect of I is non-significant, then the effect of m2 will be non-significant 
also. 

Values of the parametric estimates A, = t2/( T,  - To), Z6, 8, from table 5 
are plotted in figure 3 (a), (b) and (c) respectively, these being chosen since 
they represent values estimated from the simplest models. 
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Also shown in figure 3 are overall estimates h;, I?;, $, which are obtained 
by assuming the hypothesis that the quantities m, c, b are constant for 
experiments I, I1 and 111, and obtaining least-squares estimates using the 
combined data. These results are summarized in table 6, and are dis- 
tinguished from the results of table 5 by dashes. The variance ratio Fij 

0 

- 0.002 

- 0.004 

C 

1 I I I 1 

- 

I - 

is used to examine the significance of the effect of each added parameter 
m;, 61, ci, and the variance ratio Fii is used to examine the significance of 
the increase in the residual sum of squares z(c i2)  over the sum of the three 
individual sums of squares z(f) given for the ith model in table 5. 
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5 .  DISCUSSION OF STATISTICAL RESULTS 

In table 5 for i = 1, 2,  the values of F21 show that the parameter 
m = .I/( Tl - To) in the first-order model has a very high significance, which 
increases with ( Tl - To) as the convection effect becomes increasingly 
dominant over secondary effects. Hence the null hypothesis Hl(B - 19, = el) 

must be rejected, and the presence of a convection phenomenon appears 
to  be well established. However, from F42 the effect of the second-order 
term (mz) is not significant in experiments I and 11, and the effect in I11 
is probably not significant. Presumably, the term in m2 would become 
significant for larger values of (T l -  To) than are available in these 
experimental data. 

Separate tests of the effects of the parameters m, c and m, b against m 
.( FS2, FG2 respectively) show comparable significance for the reduction in 
residual sums of squares in the two cases. However, with the effect of m, 
c, b tested against m, b (F7& there is not a significant reduction in residual 
sum of squares. It appears that this result is due to the similarity, analogous 
to a high correlation, between the coefficients of c and b. In  physical terms, 
the effect of radiation through the upper insulated boundary (coefficient c)  
is very similar in form to the effect of variation in thermal conductivity 
due to the negative temperature coefficient (b )  of the quartz sand. Both 
phenomena tend to reduce the temperature within the convection field, 
and since each effect is small, the present method of analysis is not able 
to  resolve them completely. 

An additional test, of the parameters m, c, c' against m, c, shows that c' 
has no significance. It follows that radiation through the lower boundary 
surface is negligible. 

T o  examine the significance of the dispersion term ( 5  l), a further test 
is formulated using m, b, c and an additional perturbation parameter 
representing the effect of simple isotropic dispersion. As the three values 
obtained for the coefficient of the additional parameter are scattered closely 
about zero, it can be concluded that there is negligible dispersion of heat 
by irregularities of the fluid motion. 

Considerable heterogeneity of residual variance z ( e : / v i )  has been found 
between the results of experiments I, I1 and 111, much of the heterogeneity 
being due to a relatively large residual variance in 111. Physically, it would 
appear that the higher temperatures involved in I11 have resulted in poorer 
stabilization, the residual standard error in the temperature measurements 
being given by (I) k 0.12" A, (11) f 0.18" A, (111) i- 0.69" A respectively, 
after m, b and c have been fitted. These values are larger than the time 
variations mentioned in 9 3, since steady-state scatter in the thermocouple 
readings is present also. The effect of this heterogeneity of variance is to 
modify the distribution of the F'-values given in table 6 and the corre- 
sponding values of Qk may therefore be only an indication of the true values. 
Although it follows that the results of table 6 are statistically less reliable 
than the results of table 5, the Qk-values in table 6 are all either so large or 
so small that any numerical modification necessary is unlikely to alter their 
physical implications. 
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The results of the overall tests FL2, F&, F&, Fi, (table 6) show that the 
hypothesis that m, 6, c are constant is not disproved. The standard error 
of the estimate kl is about & 3 "/o. Constant values of these three parameters 
are expected, of course, since none is dependent upon ( Tl - To), the quantity 
varied between the three experiments. 

It will be seen that the test F& (which tests m, b, c against m, b)  does not 
give significance. If the simpler model is desired, therefore, one could 
ignore boundary radiation and choose the model H i  in preference to Hi.  

A further hypothesis Hia, using the overall data to fit m to second order 
and b to first order as in equation (15), is found to give the same residual 
sum of squares as Hi.  Hence there is no preference for or against the 
second-order model when it is compared with the first-order model. 

6. SUPPLEMENTARY OBSERVATIONS AND RESULTS 

In order to  calculate an approximate value for m by alternative means, 
it is necessary to measure the permeability of quartz sand under compression 
conditions resembling those of the convection experiment, and to measure 
the thermal conductivity of quartz sand at temperature To in the absence 
of convection. A standard Permeability experiment of Darcy type (Muskat 
1937) has been set up, the sand being carefully tapped down and compressed 
as in the convection model, and a value of 

K = (2.61 & 0.05) x 10V cm2 (31) 
has been obtained. For the conductivity measurement, water-saturated 
quartz sand is compressed between a pair of square horizontal plates, the 
upper plate being at the higher temperature. A conductivity value of 

(K,)o = (4.60 k 0.05) x c.g.s. units (32) 

has been obtained at (20 + 273)" A. With these values for K and (K,)o, and 
with GC = 2.25 x 10-4(0A)-1, d = 9.5 cm,g = 980 cmsec+, v,, = 0.010 cm2sec-l 
units, equation (2) gives 

m = q / (T l -  To) = 0-119 k 0.003 ("A)-l. (33) 

This value is in very good agreement with the least-squares estimates of m 
in $4, table 6. It will be seen that m has been determined with approximately 
the same standard error by either method. 

From these values of m, it is a simple calculation to show that the ratio 

(Km/Kw)o(~o  vo/k) = 17.5 k 0.5 cm2 s e r 2  (34)' 

for To = (273 + 20)OA and for the particular water-saturated quartz sand 
used in the experimental work. This result, which is a property of the sand 
and water alone, is of more general usefulness than m, as it is independent 
of the boundary conditions used in the model. 

A rough estimate of b has been obtained from the data on thermal 
conductivity of quartz published in the International Critical Tables 
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(National Research Council, U. S.A. 1929). In the temperature range 
20" C to 70" C, the thermal conductivity of quartz can be represented 
approximately by 

K, = 0.029{1- 0.0037( T- To)) c.g.s. units 

parallel to the principal axis of the crystal, and 
K,  = 0-016(1- 0.0024(T- To))  c.g.s. units 

perpendicular to the principal axis, where To = (273 +20)"A. If the 
directions of the principal axes of the sand grains can be assumed to have 
a spherical distribution, and if the quartz contributes the major share of 
the thermal conductivity, the average value of the temperature coefficient 
would be approximately 

This is to  the same order as the values of b estimated in $4, table 6. 
b = - O.OOZS(O A)-'. (35) 

r 0-6 (non- dimensional) 

5 + 2  
qx 1 0 4  

(cals cm-2 sec-l) 

0.8 1 -0 1 -2 

5 k 2  3 + 2  3 + 2  

Table 7. Measurement of flux of heat output through upper insulation. 

An independent estimate of c can be obtained from the approximate 
formula 

where q is the outflux of heat per unit area in c.g.s. units, and @) is the 
coefficient of c in the perturbation formulae. T o  measure q, a series of four 
differential thermocouples (calibrated as heat flux meters) are placed on 
the upper insulation at radii r corresponding to points of the relaxation net. 
The results are given in table 7, using the boundary conditions as for 
experiment I. After the integrals in (36)  have been evaluated approximately, 
a value of 

is obtained. 
in $4, table 6. 

c = - 0.10 _+ 0.05 (37)  
This result is to the same order as the values of c estimated 

7. CONCLUSIONS 
Evidently the first-order perturbation scheme provides a satisfactory 

fit to the convection data for the range of boundary temperature differences 
(7''- To) chosen. Its range of validity extends from 7 = m(Tl-  To) = 0 
to the point where the second-order term becomes significant in comparison 
with the term of first order. Presumably terms of higher order can be 
calculated, with increasing computational difficulty, but accuracy is not 
easily maintained owing to cumulative errors. 
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With the above limitation to  first-order accuracy, it appears that the 
following additional conclusions have been justified experimentally. 

(a) The motion of the liquid percolating through the sand under 
non-isothermal conditions is adequately described by Darcy’s law for the 
low values of Reynolds number (-4 1) applying here. 

(6) The hypothesis that the packed sand behaves as an approximately 
homogeneous permeable medium is satisfactory. 

(c )  Near a fixed impermeable boundary, changes in sand packing 
due to the presence of a rigid surface might be expected to produce a thin 
layer of altered permeability. Neglect of this effect does not appear to 
introduce detectable errors : hence it is not of importance. 

(d) Modifications to the apparent thermal conductivity at very low 
Reynolds numbers by fluid dispersion (8 1) is negligible. 

( e )  The thickness of the fluid boundary layer adjacent to smooth rigid 
boundaries is small, probably close to the typical grain size. 

The conditions (a) to (e )  represent initial assumptions which are 
2ontained implicitly in the theoretical solutions. Departures from these 
conditions are negligible in comparison with the convection and other effects 
analysed above, since the residual variance after fitting m, 6, c is very small. 

While the analysis of thermal boundary loss and variation of thermal 
conductivity with temperature does not give accurate results, it is clear 
that these effects are small when compared with the convection effect. 
The estimate of m is not altered appreciably by their presence, and the 
general conclusions about the convection process are not affected. 
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